Auditory Cortex Tracks Both Auditory and Visual Stimulus Dynamics Using Low-Frequency Neuronal Phase Modulation

نویسندگان

  • Huan Luo
  • Zuxiang Liu
  • David Poeppel
چکیده

Integrating information across sensory domains to construct a unified representation of multi-sensory signals is a fundamental characteristic of perception in ecological contexts. One provocative hypothesis deriving from neurophysiology suggests that there exists early and direct cross-modal phase modulation. We provide evidence, based on magnetoencephalography (MEG) recordings from participants viewing audiovisual movies, that low-frequency neuronal information lies at the basis of the synergistic coordination of information across auditory and visual streams. In particular, the phase of the 2-7 Hz delta and theta band responses carries robust (in single trials) and usable information (for parsing the temporal structure) about stimulus dynamics in both sensory modalities concurrently. These experiments are the first to show in humans that a particular cortical mechanism, delta-theta phase modulation across early sensory areas, plays an important "active" role in continuously tracking naturalistic audio-visual streams, carrying dynamic multi-sensory information, and reflecting cross-sensory interaction in real time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concurrent encoding of frequency and amplitude modulation in human auditory cortex: MEG evidence.

A natural sound can be described by dynamic changes in envelope (amplitude) and carrier (frequency), corresponding to amplitude modulation (AM) and frequency modulation (FM), respectively. Although the neural responses to both AM and FM sounds are extensively studied in both animals and humans, it is uncertain how they are corepresented when changed simultaneously but independently, as is typic...

متن کامل

Invariance of firing rate and field potential dynamics to stimulus modulation rate in human auditory cortex.

The effect of stimulus modulation rate on the underlying neural activity in human auditory cortex is not clear. Human studies (using both invasive and noninvasive techniques) have demonstrated that at the population level, auditory cortex follows stimulus envelope. Here we examined the effect of stimulus modulation rate by using a rare opportunity to record both spiking activity and local field...

متن کامل

Phase Patterns of Neuronal Responses Reliably Discriminate Speech in Human Auditory Cortex

How natural speech is represented in the auditory cortex constitutes a major challenge for cognitive neuroscience. Although many single-unit and neuroimaging studies have yielded valuable insights about the processing of speech and matched complex sounds, the mechanisms underlying the analysis of speech dynamics in human auditory cortex remain largely unknown. Here, we show that the phase patte...

متن کامل

Spectral envelope coding in cat primary auditory cortex: linear and non-linear effects of stimulus characteristics.

Electrophysiological studies in mammal primary auditory cortex have demonstrated neuronal tuning and cortical spatial organization based upon spectral and temporal qualities of the stimulus including: its frequency, intensity, amplitude modulation and frequency modulation. Although communication and other behaviourally relevant sounds are usually complex, most response characterizations have us...

متن کامل

Human auditory cortical dynamics during perception of long acoustic sequences: phase tracking of carrier frequency by the auditory steady-state response.

We recorded human auditory cortical activity during the perception of long, changing acoustic signals and analyzed information provided by dynamic neural population measures over a large range of time intervals (approximately 24 ms-5 s). Participants listened to musical scales that were amplitude modulated at a rate of 41.5 Hz, generating an ongoing, stimulus-related oscillatory brain signal, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2010